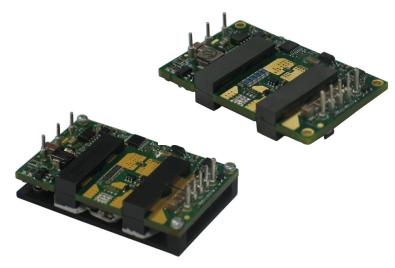
AGQ200-48S1V8

72 Watts

Quarter-brick Converter


Total Power: 72 Watts **Input Voltage:** 36 to 75 Vdc **# of Outputs:** Single

Special Features

- Delivering up to 40A output
- Ultra-high efficiency 88% typ. at full load
- Wide input range: 36V ~ 75V
- · Excellent thermal performance
- · No minimum load requirement
- · Fixed frequency operation
- RoHS 6 compliant
- · Remote ON/OFF control function
- · Remote output sense
- Trim function: -20% ~ +10%
- Input under voltage lockout
- Output over current protection
- Output over voltage protection
- · Over temperature protection
- Industry standard quarter-brick pinout outline
- · Baseplate optional
- · Pin length optional

Safety

IEC/EN/UL/CSA 60950 CE Mark GB4943 UL/TUV

Product Descriptions

The AGQ200-48S1V8 is a single output DC-DC converter with standard quarter-brick form factor and pin configuration. It delivers up to 40A output current with 1.8V output. Above 88% efficiency and excellent thermal performance makes it an ideal choice to use in telecom and datacom applications and can operate under an ambient temperature range of -40 $^{\circ}$ C $^{\sim}$ +85 $^{\circ}$ C.

Applications

Telecom/ Datacom

Model Numbers

Standard	Output Voltage	Structure	Remote ON/OFF logic	RoHS Status
AGQ200-48S1V8-4L	1.8Vdc	No baseplate Negative		R6
AGQ200-48S1V8P-4L	1.8Vdc	No baseplate	No baseplate Positive	
AGQ200-48S1V8B-4L	1.8Vdc	Baseplate	Negative	R6
AGQ200-48S1V8PB-4L	1.8Vdc	Baseplate	Positive	R6

Ordering information

AGQ200	-	48	S	1V8	Р	В	-	4	L
1		2	3	4	(5)	6		7	8

1)	Model series	AGQ: series name. The lower output is limited by its current
2	Input voltage	48: 36V ~ 75V input range, rated input voltage 48V
3	Output number	S: single output. D:dual output
4	Rated output voltage	1V8: 1.8V output
(5)	Remote ON/OFF logic	Default: negative logic; P: positive logic
6	Baseplate	B: baseplate; default: no baseplate
7	Pin length	4: 4.8±0.2mm
8	RoHS status	L: RoHS, R6; Y: RoHS, R5

Options

None

Electrical Specifications

Absolute Maximum Ratings

Stress in excess of those listed in the "Absolute Maximum Ratings" may cause permanent damage to the power supply. These are stress ratings only and functional operation of the unit is not implied at these or any other conditions above those given in the operational sections of this TRN. Exposure to any absolute maximum rated condition for extended periods may adversely affect the power supply's reliability.

Table 1. Absolute Maximum Ratings:

Parameter	Model	Symbol	Min	Тур	Max	Unit
Input Voltage						
Operating -Continuous Non-operating -100mS	All All	V _{IN,DC}	0 0	-	80 100	Vdc Vdc
Maximum Output Power	All	$P_{O,max}$	-	-	72	W
Isolation Voltage ¹ Input to outputs	All		2250	-	-	Vdc
Ambient Operating Temperature	All	T _A	-40	-	+85	οС
Storage Temperature	All	T _{STG}	-55	-	+125	οС
Voltage at Remote ON/OFF pin	All		-0.7	-	12	Vdc
Humidity (non-condensing)						
Operating Non-operating	All All		- -	-	95 95	% %

Note 1 - 1mA for 60s, slew rate of 1500V/10s

Input Specifications

Table 2. Input Specifications:

Parameter	Conditions ¹	Symbol	Min	Тур	Max	Unit
Operating Input Voltage, DC	All	$V_{\rm IN,DC}$	36	48	75	Vdc
Turn-on Voltage Threshold	$I_{O} = I_{O,max}$	$V_{\rm IN,ON}$	31	34	36	Vdc
Turn-off Voltage Threshold	$I_{O} = I_{O,max}$	$V_{IN,OFF}$	30	33	35	Vdc
Lockout Voltage Hysteresis	$I_{O} = I_{O,max}$		1	-	3	V
	$V_{IN,DC} = 36V_{DC}$	I _{IN,max}	-	-	2.5	А
No-load input current	I _O = 0A	I _{IN}	-	0.07	0.1	Α
Standby Input current	Remote OFF I _{IN}		-	0.01	0.1	Α
Inrush current transient rating	Power ON		-	0.5	1	A ² s
Recommended Input Fuse	Fast blow external fuse recommended		-	-	10	Α
Input filter component values (C\L)	Internal values			4.0\5.0		μF\μH
Recommended External Input Capacitance	Low ESR capacitor recommended	C _{IN}	-	100	-	uF
Input Reflected Ripple Current	Through 12uH inductor		-	7	20	mA
Input voltage ripple rejection	120Hz		40	80	-	dB
Operating Efficiency	$T_A=25$ °C $I_O = I_{O,max}$ $I_O = 50$ % $I_{O,max}$	η	-	88.0 88.5	-	% %

Note 1 - Ta = 25 $^{\circ}$ C, airflow rate = 400 LFM, Vin = 48Vdc, nominal Vout unless otherwise noted.

Output Specifications

Table 3. Output Specifications:

Parameter		Condition ¹	Symbol	Min	Тур	Max	Unit
Factory Set Voltage		$V_{IN,DC} = 48V_{DC}$ $I_{O} = I_{O,max}$	Vo	1.77	1.80	1.83	Vdc
Total Regulation		Inclusive of line, load temperature change, warm-up drift	Vo	1.75	1.80	1.85	Vdc
Output Voltage Line Reg	julation	All	±V _O	-	0.3	5	mV
Output Voltage Load Re	gulation	All	±V _O	-	0.4	10	mV
Output Voltage Tempera	ture Regulation	All	%V _O	-	-	0.02	%/°C
Output Voltage Trim Rar	nge	All	Vo	1.44	-	1.98	V
Output Ripple, pk-pk		Measure with a 1uF ceramic capacitor in parallel with a 10uF tantalum capacitor, 0 to 20MHz bandwidth	Vo	-	45	100	mV _{PK-PK}
Output Current		All	Io	0	-	40	Α
Output DC current-limit inception ²			Io	44	-	56	Α
V _O Load Capacitance ³		All	Co	470	470	10000	uF
		25%~50%~25% load change slew rate = 0.1A/us	±V _O T _s	-	31 90	-	mV uS
V _O Dynamic Response	Peak Deviation - Settling Time	25%~50%~25% load change slew rate = 1A/us	±V _O T _s		140 100		mV uS
		0%~50%~0% load change slew rate = 0.1A/us	±V _Ο	-	65	-	mV
		10%~100%~10% load change slew rate = 0.1A/us	±V _O	-	63		mV
	Rise time	$I_{O} = I_{max}$	T _{rise}	-	5	30	mS
Turn-on transient	Turn-on delay time	$I_O = I_{max}$	T _{turn-on}	-	3	10	mS
on danoont	Output voltage overshoot	$I_O = Imax$ $T_A = 25^{\circ}C$	%V _O	-	-	5	%

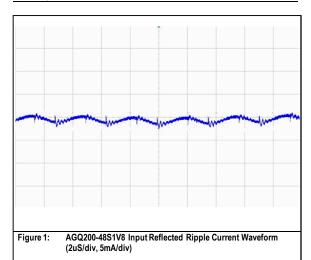
Note 1 - Ta = 25 °C, airflow rate = 400 LFM, Vin = 48Vdc, nominal Vout unless otherwise noted.

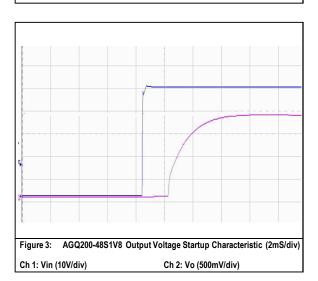
Note 2 - Hiccup: auto-restart when over-current condition is removed.

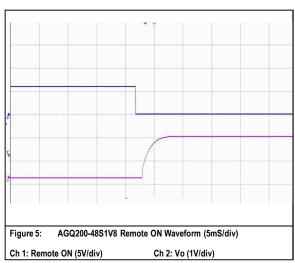
Note 3 - High frequency and low ESR is recommended.

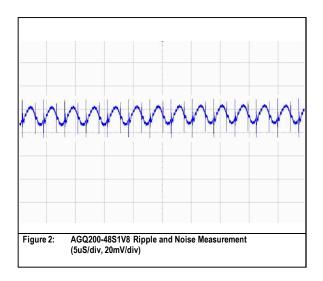
Output Specifications

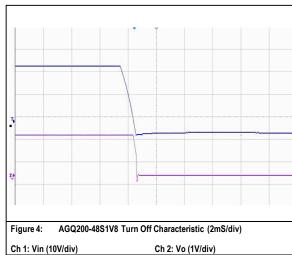
Table 3. Output Specifications, con't:

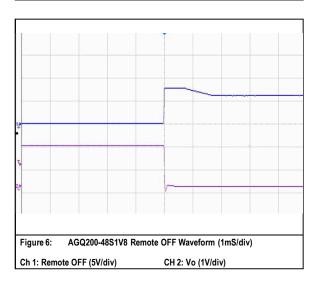

Parameter		Condition	Symbol	Min	Тур	Max	Unit
Switching frequency ⁴		All	f _{SW}	-	280	-	KHz
Remote ON/OFF	Off-state voltage	All		-0.7	-	1.2	٧
control (positive logic)	On-state voltage	All		3.5	-	12	V
Remote ON/OFF	Off-state voltage	All		3.5	-	12	V
control (negative logic)	On-state voltage	All		-0.7	-	1.2	V
Output over-voltage protection ⁵		All	%V _o	120	-	140	%
Output over temperature			Т	110	-	135	O
Output over-temperature	e protection ^s	Baseplate] '	90	-	120	30
Over-temperature hyster	esis	All	Т	5	-	-	οС
Output voltage remote sense range		All	±V _O	-	-	0.5	V
MTBF		Telcordia SR-332- 2006; 80% load, 300LFM, 40 °C T _A		-	2	-	10 ⁶ h

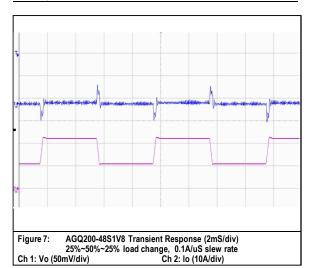

Note 4- Regulation stage and isolation stage.

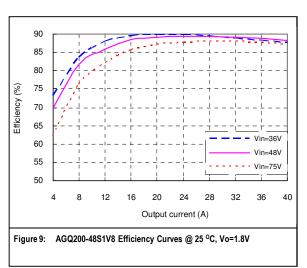

Note 5 – Hiccup: auto-restart when over-voltage condition is removed.

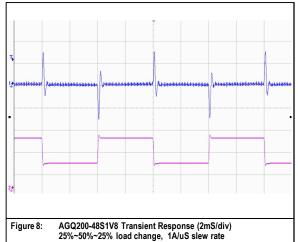

Note 6 – Auto recovery.


AGQ200-48S1V8 Performance Curves

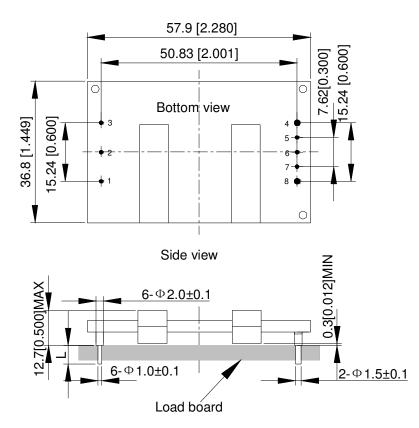






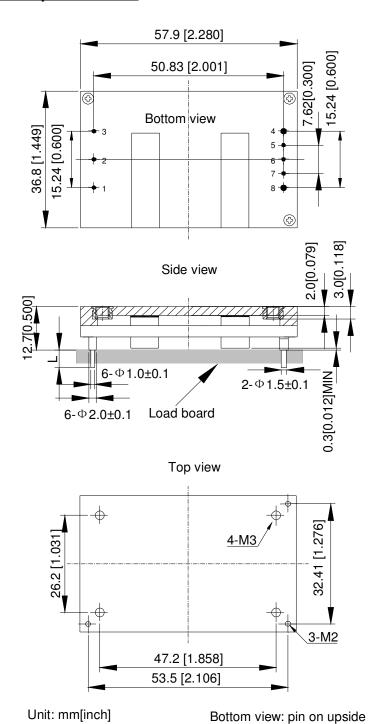


AGQ200-48S1V8 Performance Curves



Mechanical Specifications

<u>Mechanical Outlines - No baseplate Module</u>



Unit: mm[inch] Bottom view: pin on upside

Tolerance: X.Xmm±0.5mm[X.X in.±0.02in.] X.XXmm±0.25mm[X.XX in.±0.01in.]

Mechanical Specifications

<u>Mechanical Outlines – Baseplate Module</u>

Tolerance: X.Xmm±0.5mm[X.X in.±0.02in.] X.XXmm±0.25mm[X.XX in.±0.01in.]

Mechanical Specifications

Pin Length Options

Device code suffix	L
-4	4.8 mm ± 0.2 mm
-6	3.8 mm ± 0.2 mm
-8	2.8 mm ± 0.2 mm
None	5.8mm±0.2 mm

Pin Designations

Pin No	Name	Function		
1	Vin+	Positive input voltage		
2	Remote ON/OFF	Remote ON/OFF control		
3	Vin-	Negative input voltage		
4	Vo-	Negative output voltage		
5	S-	Negative remote sense		
6	Trim	Output voltage trim		
7	S+	Positive remote sense		
8	Vo+	Positive output voltage		

Environmental Specifications

EMC Immunity

AGQ200-48S1V8 series power supply is designed to meet conducted emission's requirements of EN55022 Class A with external filter.

EMC Filter Configuration

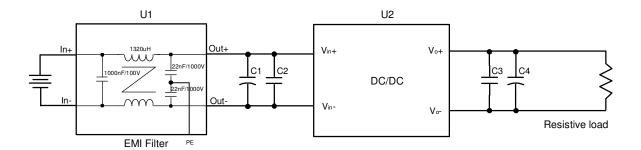


Figure 10 EMC test configuration

U1: 5A input EMC filter module

U2: Module to test, AGQ200-48S1V8

C1 ~ C4: See Figure 16

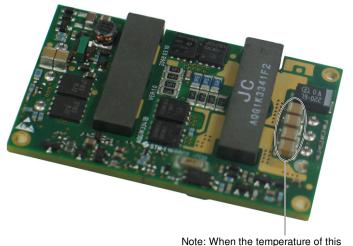
Technical Reference Note

Rev.10.13.14_#1.1 AGQ200-48S1V8 Page 13

Safety Certifications

The AGQ200-48S1V8 power supply is intended for inclusion in other equipment and the installer must ensure that it is in compliance with all the requirements of the end application. This product is only for inclusion by professional installers within other equipment and must not be operated as a stand alone product.

Table 4. Safety Certifications for AGQ200-48S1V8 series power supply system


Document	File#	Description
UL/CSA 60950		US and Canada Requirements
EN60950		European Requirements
IEC60950		International Requirements
GB4943		Chinese Requirements
CE		CE Marking

Operating Temperature

The AGQ200 series power supplies will start and operate within stated specifications at an ambient temperature from -40 °C to 85 °C under all load conditions. The storage temperature is -55 °C to 125 °C.

Thermal Considerations —No baseplate Model

The converter is designed to operate in different thermal environments and sufficient cooling must be provided. Proper cooling of the DC/DC converter can be verified by measuring the temperature at the test point as shown in the Figure 11

test point is lower than 100°C, the module thermal reliability is available

Figure 11 No baseplate model temperature test point

For a typical application, Figure 12 shows the derating of output current vs. ambient air temperature at different air velocity.

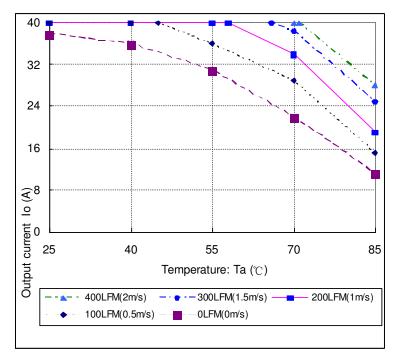


Figure 12 No baseplate model, output power derating, 48Vin, air flowing across the converter from pin 1 to pin 3 Artesyn Embedded Technologies

<u>Thermal Considerations — Baseplate Model</u>

The converter is designed to operate in different thermal environments and sufficient cooling must be provided. Proper cooling of the DC/DC converter can be verified by measuring the temperature at the test point as shown in the Figure 13.

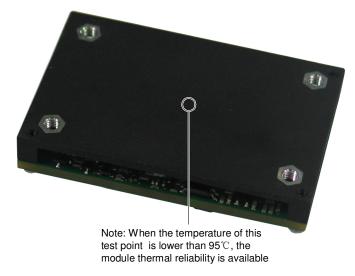
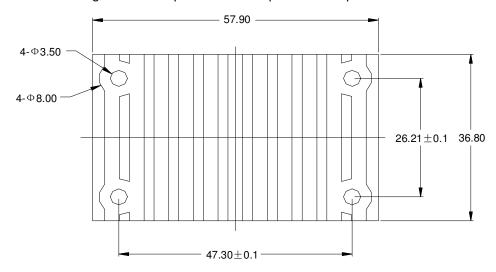



Figure 13 Baseplate model temperature test point on converter

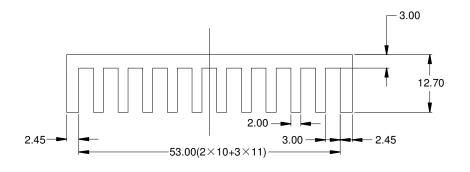


Figure 14 Heatsink (unit: mm)

<u>Thermal Considerations — Baseplate Model Con't</u>

For a typical application, Figure 15 shows the derating of output current vs. ambient air temperature at different air velocity

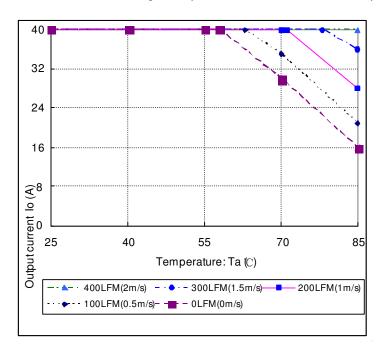


Figure 15 Baseplate model, output power derating, 48Vin, air flowing across the converter from pin 1 to pin 3

Qualification Testing

Parameter	Unit (pcs)	Test condition
Halt test	4-5	$T_{a,min}$ -10 °C to $T_{a,max}$ +10 °C, 5 °C step, V_{in} = min to max, 0 ~ 105% load
Vibration	3	Frequency range: 5Hz ~ 20Hz, 20Hz ~ 200Hz, A.S.D: 1.0m²/s³, -3db/oct, axes of vibration: X/Y/Z. Time: 30min/axes
Mechanical Shock	3	30g, 6mS, 3axes, 6directions, 3time/direction
Thermal Shock	3	-40 °C to 100 °C, unit temperature 20cycles
Thermal Cycling	3	-40 °C to 55 °C, temperature change rate: 1 °C/min, cycles: 2cycles
Humidity	3	40 °C, 95%RH, 48h
Solder Ability	15	IPC J-STD-002C-2007

Application Notes

Typical Application

Below is the typical application of the AGQ200-48S1V8 series power supply.

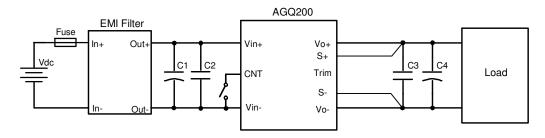


Figure 16 Typical application

C1: 100uF/100V electrolytic capacitor, P/N: UVZ2A101MPD (Nichicon) or equivalent caps

C2: 1uF/100V X7R ceramic capacitor

C3: 1uF/25V X7R ceramic capacitor

C4: 470uF/25V electrolytic capacitor, P/N: UPM1E471MPD (Nichicon) or equivalent caps

Fuse: External fast blow fuse with a rating of 10A

If the load is far from the unit, connect S+ and S- to the terminal of the load respectively to compensate the voltage drop on the transmission line.

Remote ON/OFF

Either positive or negative remote ON/OFF logic is available in AGQ200-48S1V8. Figure 17 is the detailed internal circuit and reference in AGQ200-48S1V8.

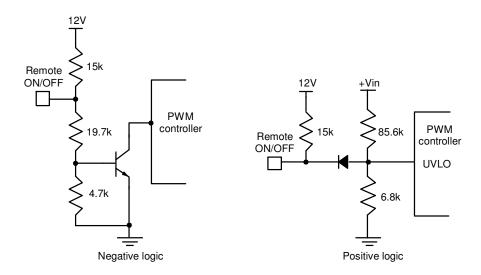


Figure 17 Remote ON/OFF internal diagram

Trim Characteristics

Connecting an external resistor between Trim pin and Vo- pin will decrease the output voltage. While connecting it between Trim and Vo+ will increase the output voltage. The following equations determine the external resistance to obtain the trimmed output voltage.

$$\begin{split} R_{trim-down} &= \frac{510}{\Delta} - 10.2(K\Omega) \\ R_{trim-up} &= \frac{5.1 \times V_{nom} \times (100 + \Delta)}{0.6 \times \Delta} - \frac{510}{\Delta} - 10.2(K\Omega) \end{split}$$

 \triangle :Output e rate against nominal output voltage.

$$\Delta = \frac{100 \times (V_{nom} - V_0)}{V_{nom}}$$

V_{nom}: Nominal output voltage.

For example, to get 1.98V output, the trimming resistor is

$$\Delta = \frac{100 \times (V_{nom} - V_0)}{V_{nom}} = \frac{100 \times (1.98 - 1.8)}{1.8} = 10$$

$$R_{trim-up} = \frac{5.1 \times 1.8 \times (100 + 10)}{1.225 \times 10} - \frac{510}{10} - 10.2 = 21.2(K\Omega)$$

The output voltage can also be trimmed by potential applied at the Trim pin.

$$V_o = 0.735V_{trim} + 0.9$$

When V_{trim} is the potential applied at the Trim pin, and V_o is the desired output voltage.

When trimming up, the output current should be decreased accordingly so as not to exceed the maximum output power.

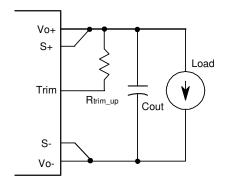


Figure 18 Trim up

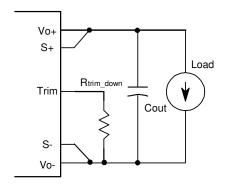


Figure 19 Trim down

Input Ripple & Output Ripple & Noise Test Configuration

Figure 20 Input ripple & inrush current, output ripple & noise test configuration

Vdc: DC power supply

L1: 12uH

Cin: 220uF/100V typical C1 ~ C4: See Figure 16

Technical Reference Note

Rev.10.13.14_#1.1 AGQ200-48S1V8 Page 22

Soldering

The product is intended for standard manual or wave soldering.

When wave soldering is used, the temperature on pins is specified to maximum 260 °C for maximum 7s.

When manual soldering is used, the iron temperature should be maintained at $300\,^{\circ}\text{C} \sim 380\,^{\circ}\text{C}$ and applied to the converter pins for less than 10s. Longer exposure can cause internal damage to the converter.

Cleaning of solder joint can be performed with cleaning solvent IPA or similative.

Hazardous Substances Announcement (RoHS of China R6)

Porto	Hazardous Substances						
Parts	Pb	Hg	Cd	Cr ⁶⁺	PBB	PBDE	
AGQ200-48S1V8	Х	Х	Х	Х	х	Х	

- x: Means the content of the hazardous substances in all the average quality materials of the part is within the limits specified in SJ/T-11363-2006
- $\sqrt{\ }$: Means the content of the hazardous substances in at least one of the average quality materials of the part is outside the limits specified in SJ/T11363-2006

Artesyn Embedded Technologies has been committed to the design and manufacturing of environment-friendly products. It will reduce and eventually eliminate the hazardous substances in the products through unremitting efforts in research. However, limited by the current technical level, the following parts still contain hazardous substances due to the lack of reliable substitute or mature solution:

- 1. Solders (including high-temperature solder in parts) contain plumbum.
- 2. Glass of electric parts contains plumbum.
- 3. Copper alloy of pins contains plumbum

Hazardous Substances Announcement (RoHS of China R5)

Parts	Hazardous Substances					
	Pb	Hg	Cd	Cr ⁶⁺	PBB	PBDE
AGQ200-48S1V8	√	Х	Х	Х	х	х

- x: Means the content of the hazardous substances in all the average quality materials of the part is within the limits specified in SJ/T-11363-2006
- $\sqrt{\ }$: Means the content of the hazardous substances in at least one of the average quality materials of the part is outside the limits specified in SJ/T11363-2006

Artesyn Embedded Technologies has been committed to the design and manufacturing of environment-friendly products. It will reduce and eventually eliminate the hazardous substances in the products through unremitting efforts in research. However, limited by the current technical level, the following parts still contain hazardous substances due to the lack of reliable substitute or mature solution:

- 1. Solders (including high-temperature solder in parts) contain plumbum.
- 2. Glass of electric parts contains plumbum.
- 3. Copper alloy of pins contains plumbum

WORLDWIDE OFFICES

Americas

2900 S.Diablo Way Tempe, AZ 85282 USA +1 888 412 7832

Europe (UK)

Waterfront Business Park Merry Hill, Dudley West Midlands, DY5 1LX United Kingdom +44 (0) 1384 842 211

Asia (HK)

14/F, Lu Plaza 2 Wing Yip Street Kwun Tong, Kowloon Hong Kong +852 2176 3333

www.artesyn.com

For more information: www.artesyn.com/power For support: productsupport.ep@artesyn.com

While every precaution has been taken to ensure accuracy and completeness in this literature, Artesyn Embedded Technologies assumes no responsibility, and disclaims all liability for damages resulting from use of this information or for any errors or omissions. Artesyn Embedded Technologies, Artesyn and the Artesyn Embedded Technologies logo are trademarks and service marks of Artesyn Technologies, Inc. All other names and logos referred to are trade names, trademarks, or registered trademarks of their respective owners.