TECHNICAL REFERENCE NOTE

ARTESYN LGA110-EVAL-KIT Evaluation Test Board

PRODUCT DESCRIPTION

Advanced Energy's Artesyn LGA110D Evaluation Test Board is designed to have two LGA110D non-isolated modules. It allows the user to test and investigate the performance of modules.

This document is a reference guide for the evaluation test board. It provides output terminals, test points to power signals, control signals and communication interface via I²C bus. Refer to the technical reference note of the power supply for more information about the specifications and the signal definitions.

AT A GLANCE

Total Power

350 Watts per Module

Input Voltage

0.5 to 5 Vdc

of Outputs

Dual or Single

CONTENTS

- Overview
- Pin Assignment
- Test Point Introduction
- Test Set Up
- Operation
- Supported Models
- Schematic
- PCB Layout

Advanced

OVERVIEW

Overview

Default Settings:

Module1 is configured as 2 phase 2 output (Vo1, Vo2)

Module2 is configured as 2 phase 1 output (Vo3)

The key components and connection locations are shown in the picture of the evaluation board below.

Figure 1. Evaluation Test Board for LGA110D

PIN ASSIGNMENT

Pin Assignment								
Item	Pin Number	Designation	Function					
	BUSB101	V _{IN1}	Input Terminal					
	BUSB102	V _{IN1_GND}	Input Return Terminal					
	BUSB1101	V _{IN2}	Input Terminal					
	BUSB1102	V _{IN2_GND}	Input Return Terminal					
	BUSB105	V _{O1}	Output Terminal					
	BUSB106	V _{O1_GND}	Output Return Terminal					
Toot Doint	BUSB103	V _{O2}	Output Terminal					
Test Point	BUSB104	V _{O2_GND}	Output Return Terminal					
	BUSB1105	V _{O3}	Output Terminal					
	BUSB1106	V _{O3_GND}	Output Return Terminal					
	BUSB1103	V _{O3}	Output Terminal					
	BUSB1104	V _{O3_GND}	Output Return Terminal					
	J205	$\rm V_{\rm IN1}$, $\rm V_{\rm O1}$ & $\rm V_{\rm O2}$	Module1 Efficiency Measurement					
	J1205	V _{IN2} & V _{O3}	Module2 Efficiency Measurement					
lumpor	J203	Enable Jumper	Output Enable					
Jumper	J1206	SYNC Jumper	Clock Synchronization					
	S201	Enable Switch	Output Enable					
Switch	S601	V _{O1}	V ₀₁ Setting					
	S602	V _{O2}	V _{O2} Setting					
	S603	V _{O3}	V _{O3} Setting					
Connector	J204	12C Connector	I ² C Communication					
Connector	J206							

LGA110D Output Enable Connection (S201, J203)

LGA110D I²C Connection (J204, J206)

LGA110D SYNC Connection (J1206: SYNC1, SYNC2)

4 PHASES CONNECTOR							
SHARE2	J1206	14	OTHR12 [451-007470-0002]	13	J1206	SHARE3	
EN2	J1206	12	OTHR11 [451-007470-0002]	11	J1206	EN3	
SYNC1	J1206	10	OTHR10 [451-007470-0002]	9	J1206	SYNC2	
PG2	J1206	8	OTHR9 [451-007470-0002]	7	J1206	PG3	
VS2+	J1206	6	OTHR8 [451-007470-0002]	5	J1206	VS3+	
VS2-	J1206	4	OTHR7 [451-007470-0002]	3	J1206	VS3-	
DDC2	J1206	2	OTHR6 [451-007470-0002]	1	J1206	DDC3	
			24				

4 PHASES CONNECTOR

LGA110D Voltage Setting (S601, S602, S603 & S604)

LGA110D Vout Ripple Measurement Point (J303, J403, J1403)

LGA110D PG Measurement Point (J210, J211, J1210)

LGA110D Efficiency & Regulation Measurement (J205, J1205)

REGULATION **	W N TVO2
REGULATION	W. WOI
Z >	N N GND
又之 SENSE ビー	015
LOI SENSE	IIIS
	The second
Σω	J205

VIN_GND	J205	2	J205			VIN1_SENSE
VOUT1_GND	J205	4	J205			VOUT1_SENSE
VOUT2_GND	J205	6	J205			VOUT2_SENSE
VOUT1 GND REGULATION R216	J205	8	J205		R217	VOUT1_REGULATION
VOUT2 GND REGULATION 10R	R218 J205	10	J205	R219	10R	VOUT2_REGULATION
	10R	10/		10R		

VIN2_GND	J1205	1 2	J1205		VIN2 SENSE
VOUT3 GND SENSE	J1205		J1205		VOUT3 SENSE
VOUT3 GND REGULATION R1204	J1205		J1205	R1205	VOUT3 REGULATION
10R	J1205		J1205	10R	
0.063W 1%	J1205	0 10	J1205	0.063W	
		9 10			

Module2 Efficiency Measurement (Vo3)

Note: The efficiency test point is Vout sense; The regulation test point is Vout regulation.

Hardware Test Setup

The LGA110D can be connected with the E-load via the Vout and Return terminals, and communicates with LGA110D GUI by the I²C connector J204.

Example:

Figure 2. Hardware Interface Setup

Software Test Setup

The LGA110D has an evaluation software, LGA110D GUI, designed to make the unit accessible to the user. It is intended to control and monitor the LGA110D units as they would be used in an application.

Figure 3. Software Interface Setup

The LGA110D GUI must be installed on a PC before using of all of the functions of this program. Please refer to the Figure 4.

Part Library ×	Power Map × Rail Scope Sequencing	Monitor View × Fault Status
Part Library	Power Map	100 % 🚺 🔰 Monitor ·
Generic	Dall 1	Rail 1
 Digital, Integrated FET 	Source 1	Device Address multiple
 Digital, POL Single Phase 	() pG 1.800V 199.750A 66 €	0 0 0
 Digital, POL Dual Phase 	ι ι ι ι ι ι ι ι ι ι ι ι ι ι ι ι ι ι ι	Power Good PG
 Digital, Multiphase, 1st Gen 		Vout 1.8 V
 Digital, Module 	and a second	PMBus Enable 💌
 Digital, Power Monitor 		Immediate Off 💌
Power Management IC	and the second second second second second second	Margin Nominal 💌
Automotive		Output Voltage 🗵
		1 800 V
		1.44 2.16
		Input Voltage 🗵
		11.656 V • • • •
		557 19.6
		Output Current Z
		199.750 A 🔹 💌
		-384 408
		Input Current 2

Figure 4. LGA110D GUI (Power Navigator)

Programming Sequence

Figure 5. Programming Sequence

Test Setup Example

The setup example is shown in figure 5. It contains the input cord, LGA110D, evaluation test board, intersil adapter and computer. The adapter is required to connect the unit to the computer.

Figure 6. Setup Example

Power Up/Down Sequence

1. Please make sure the OUTPUT ENABLE toggle switch (S201) is disabled.

2. Connect the input and output cables to the bus-bars.

- a. Vin1 and Vin2 connect to the main DC source
- b. Vo1, Vo2 and Vo3 connect to the E-load
- c. Add SYNC jumper to J1206 (SYNC1 to SYNC2)

d. Add Enable jumper to short EN1, EN2, EN3 and Switch-EN on J203. If only Vo1 and Vo2 are needed, then jumper is only needed to put at EN1, EN2 and Switch-EN.

Power Up/Down Sequence Con't

3. If I2C communication is needed, connect I2C dongle to I2C connector (J204 or J206).

4. Select the suitable voltage for Vo1, Vo2 and Vo3 by switches (S601, S602, S603 & S604). Default setting is Pin2 on and the Vout=1V. Use the PMBus command to change the Vout setting.

5. Power up sequence.

- a. Apply main voltage to Vin1 and Vin2. Vin1 is for module1 (Vo1 & Vo2), Vin2 is for module2 (Vo3).
- b. Toggle Enable switch (S201) to enable LGA110D Vout.

6. Power down sequence.

- a. Toggle Enable switch to disable LGA110D Vout.
- b. Turn off main voltage to Vin1 and Vin2.

Warning: Not follow power up/down sequence may damage the demo board.

Additional information

1. EN1, EN2 and EN3 can control Vo1, Vo2 and Vo3 individually.

2. This demo board is designed to have two LGA110D modules which can be tested efficiency independently. If the user wants to use only one module, need to follow below steps to measure the efficiency.

For module1 (2phase 2output) efficiency measurement:

1. Please make sure the OUTPUT ENABLE toggle switch (S201) is disabled.

2. Hardware change:

a. Separate the input

b. Remove the SYNC jumper on J1206

- c. Remove the bias resistor R201
- d. Add 5V bias to the PINL207 & PINL209
- e. Remove module2 PMBus resistors R1201, R1202, R1203

LGA110-EVAL-KIT

OPERATION

- 3. Configuration file changed to '1+1' by GUI.
- 4. Power up sequence.
 - a. Apply 5V bias voltage.
 - b. Apply main voltage to Vin1.
 - c. Toggle Enable switch (S201) to enable LGA110D Vout.

- 5. Power down sequence
 - a. Toggle Enable switch to disable LGA110D Vout.
 - b. Turn off main voltage to Vin1.
 - c. Turn off bias 5V voltage.

Warning: Not follow power up/down sequence may damage the demo board.

For module2 (2phase 1output) efficiency measurement:

1. Please make sure the OUTPUT ENABLE toggle switch (S201) is disabled.

2. Hardware change:

a. Separate the input

b. Remove the SYNC jumper on J1206

- c. Remove the bias resistor R201
- d. Add 5V bias to the PINL207 & PINL209
- e. Remove module1 PMBus resistors R1211, R1212, R1213
- 3. Configuration file changed to '2' by GUI.
- 4. Power up sequence.
 - a. Apply 5V bias voltage.
 - b. Apply main voltage to Vin2.
 - c. Toggle Enable switch (S201) to enable LGA110D Vout.

5. Power down sequence.

- a. Toggle Enable switch to disable LGA110D Vout.
- b. Turn off main voltage to Vin2.
- c. Turn off bias 5V voltage.

Warning: Not follow power up/down sequence may damage the demo board.

LGA110-EVAL-KIT

SUPPORTED MODELS

Part Number	Description
LGA110D-01DADJJ	Dual O/P Non-isolated 110 A Digital DC/DC Converter

SCHEMATIC

Schematic

SCHEMATIC

Schematic

Silkscreen

Top Copper

Layer2 Copper

Layer3 Copper

Layer4 Copper

Layer5 Copper

Layer6 Copper

Layer7 Copper

Bottom Copper

LGA110-EVAL-KIT

RECORD OF REVISION AND CHANGES

Issue	Date	Description	Originators
1.0	01.17.2022	First Issue	J. Ma

ABOUT ADVANCED ENERGY

Advanced Energy (AE) has devoted more than three decades to perfecting power for its global customers. AE designs and manufactures highly engineered, precision power conversion, measurement and control solutions for mission-critical applications and processes.

Our products enable customer innovation in complex applications for a wide range of industries including semiconductor equipment, industrial, manufacturing, telecommunications, data center computing, and medical. With deep applications know-how and responsive service and support across the globe, we build collaborative paGNDerships to meet rapid technological developments, propel growth for our customers, and innovate the future of power.

PRECISION | POWER | PERFORMANCE

For international contact information, visit advancedenergy.com.

Advanced Energy

powersales@aei.com (Sales Support) productsupport.ep@aei.com (Technical Support) +1 888 412 7832 Specifications are subject to change without notice. Not responsible for errors or omissions. ©2020 Advanced Energy Industries, Inc. All rights reserved. Advanced Energy®, and AE® are U.S. trademarks of Advanced Energy Industries, Inc.